Current Status of Agricultural Mechanization and Biosystems Engineering Research and their future in Korea

2015/7/28

Hak-Jin Kim, Seoul National University

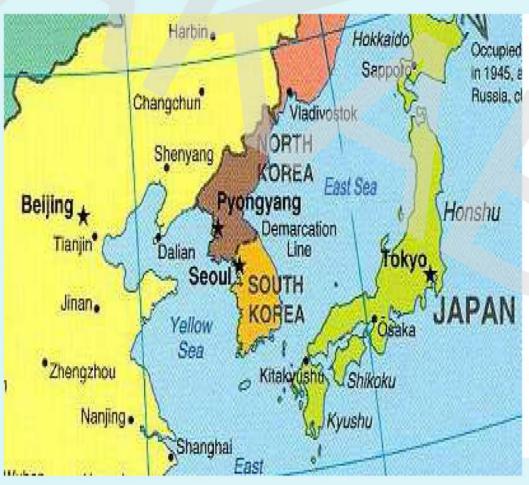
Table of Contents

- Background
- ❖ Agricultural Mechanization in Korea
- Overview of BSE Departments in Korea
- *Research Trends in BSE in Korea
- ❖ Future of Korean BSE
- Conclusions

Acknowledgements

- Sang Hun Kim, President of KSAM
- Kyeonguk Kim, Professor of SNU
- Ghiseok Kim, Assistant Professor of SNU
- Changyong Kang, Senior Researcher of KREI

Background


- Korean agricultural mechanization has contributed to a tremendous increase in agricultural productivity.
- Agricultural productivity should be maintained or increased to meet the food demands of over 9 billion people by 2050 while conserving natural resources.

 To introduce the current status of agricultural mechanization and biosystems engineering research in Korea as well as their future

Introduction

Republic of KOREA

Occupied Population: 51 Million

Population Growth: 0.45%

Area: 100,210 km²

GDP/Capita: US\$25,189

GDP Growth: 3%

Farm Population: 3M (6.4%)

Agri. Production: 2.9% of GNP

Agricultural Mechanization in Korea

History of Agricultural Mechanization

1963: Production of Power tillers

1969: Production of Tractors

1972: 1st 5-year farm mechanization plan

1973: Introduction of Rice Transplanter

1976: KSAM Establish

1977: Introduction of Binders

1978: Farm mechanization promotion law 1979: Institute of Farm Mechanization (IFM)

1982: Production of Combine

1995: Agri. machinery inspection from mandatory to optional

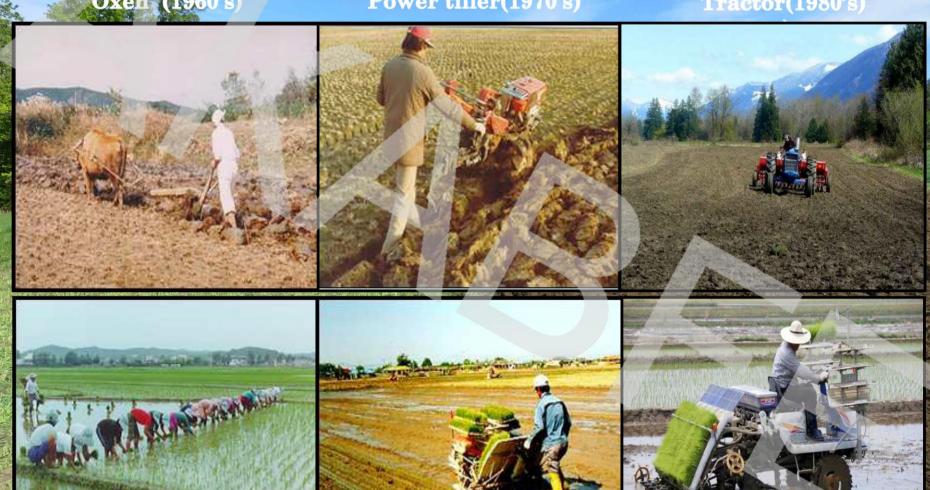
2000: No subsidy for purchasing agri. machinery

2002: 7th 5-year farm mechanization plan, Farm population 7.5%

2004: IFM to National Institute of Agricultural Engineering (NIAE)

2008: NIAE to Department of Agri. Engr. under NAAS

2014: 2nd KIEMSTA



Plowing and Rice transplanting

Oxen (1960's)

Power tiller(1970's)

Tractor(1980's)

Manual (~1970s)

Walking (1980's)

Riding (1990's ~)

Irrigation and Weeding

Manual (~ 1960's)

Powertiller Pump (1970,s) Irrigation Channel (1980,s)

Manual(1960's)

Tractor (1990's~)

Rice Transplanter (1990's ~)

Spraying and Harvesting

Hand sprayer (~1970's)

Power sprayer (1970's~) Aerial application(1980's~)

Hand reaping (\sim 1970's)

Binder (1980's)

Combine(1980's~)

Threshing and Drying

Treadle thresher(~1950's)

Power Thresher (~1970's)

Self-feeding thresher (~1980's)

Sun drying

Circulating grain dryer(1980's~) Rice processing complex(1990's~)

Mechanization for Upland Crop Farming

Garlic

Separation

Seeding

Sorting

Harvesting

Mulching

Stem Cutting

■ Labor Saving : △ 81%

Mechanization for Upland Crop Farming

Onion

Seeding

Transplanting

Power tiller Harvesting

Type 1 Tractor Harvesting

Type 2 Tractor Harvesting

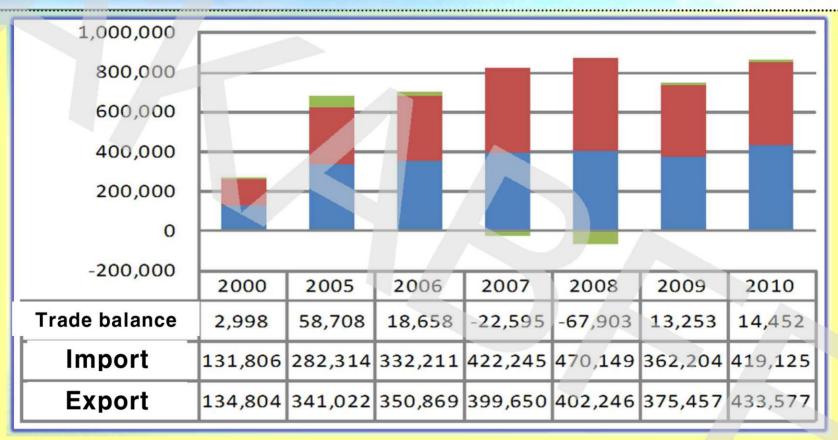
Cleaning System

Agricultural Mechanization

Rice and Upland Crops (2012)

Rice		Upland crops		
Operation	Rate (%)	Operation	Rate (%)	
Tillage	99.9	Tillage	99.4	
Transplanting	99.8	Seeding & Transplanting	3.9	
Harvesting	99.9	Mulching	64.1	
Drying	58.5	Pest control	96.3	
Pest control	99.3	Harvesting	14.6	

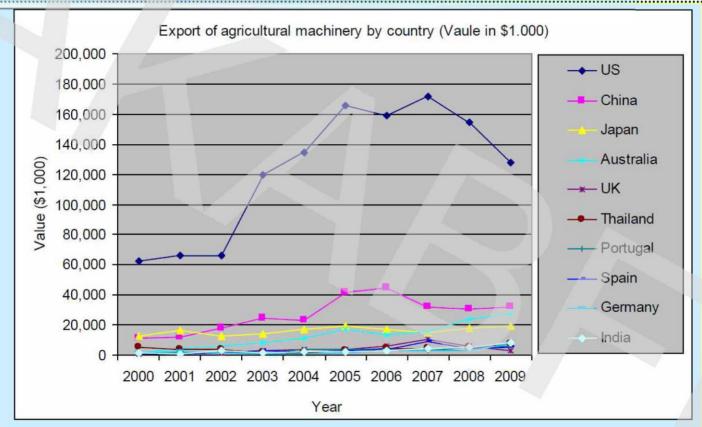
Agricultural Mechanization


Mechanization Rate of various upland crops (2010)

	Mechanization rate(%)						
Стор	Plowing	Seeding	Mulching	Spraying	Weeding	Harvesting	
Soybean	99.1	4.5	62.0	89.0	30.0	12.5	
Potato	99.9	14.5	73.1	99.2	30.9	73.0	
Cabbage	99.8	0	71.8	96.5	62.8	0	
Red Pepper	99.9	0	45.1	88.1	22.6	0	
Garlic	99.2	24.8	41.4	97.2	37.4	22.4	

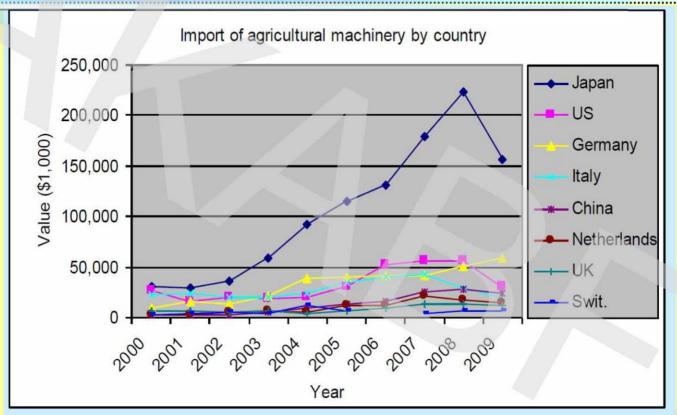
Mechanization for seeding and harvesting is most needed.

Import/Export of Korean Ag-Machinery


Trade Market (unit: \$1,000)

- since 2000, trade increased
 - 2010, 900M\$
 - Export is higher than import

Export of Ag-machinery


Export by country (unit: \$1,000)

- ♦ Mainly tractors exported to US (more than 40%)
- Exports to China are not increased

Import of Ag-Machinery

Import by country (unit: \$1,000)

Mainly tractors(>50hp) imported from Japan (more than 50%)
 followed by rice transplanters (Japan) and bailers (Europe)

Biosystems Engineering Research in Korea

Agricultural Engineering

~2000

Agricultural Engineering

Soil and Water Agri-Environment

Agricultural Machinery

Power and Machinery Postharvest Engineering


2001 ~ Present

Regional Systems Engineering

Soil and Water Resources Agri-environment and Rural Systems

Biosystems Engineering

Off-road Machine Systems
Agri-Environmental Systems
IT and Electronics
Agri-Process and Food Engineering
Biological Engineering

Departments of Biosystems Engineering

- 11 Universities
- 17~30 Students

Providence	University	College	Name of Department
Seoul	SNU	CALS	Biosystems Engr.
Kangwon	KNU	CALS	Biosystems Engr.
Gyeonggi	SKKU	CBBE	Bio-mechatronics
Daejeon Chungnam	CNU KGNU	CALS CBIS	Biosystems Machinery Engr. Bio-mechanical Engr.
Chungbuk	CBNU	CALS	Biosystems Engr.
Gyoengnam	GNU	CALS	Bio-industrial Machinery Engr.
Busan	PNU	CLRS	Bio-industrial Machinery Engr.
Gyeongbuk	KNU	CALS	Bio-industrial Machinery Engr.
Gwangju Chonnam	JNU Sunchon Univ	CALS CBIS	Biosystems Engr. Bio-industrial Machinery Engr.
Chonbuk	JBNU	CALS	Bio-industrial Machinery Engr.

Biosystems Engineering

Location of BSE Departments

SNU/SKKU

- Off-road, Automation
- Bio-process
- Bio-environment
- Tissue engineering

CNU/Kongju

- Power machinery
- Postharvest Engr.

Chonnbuk National Univ

- IT Center for Ag. Machinery
- Postharvest Engr.

JNU/Soonchun

- Biosystems
 Instrumentation and
 Control
- Biosensors

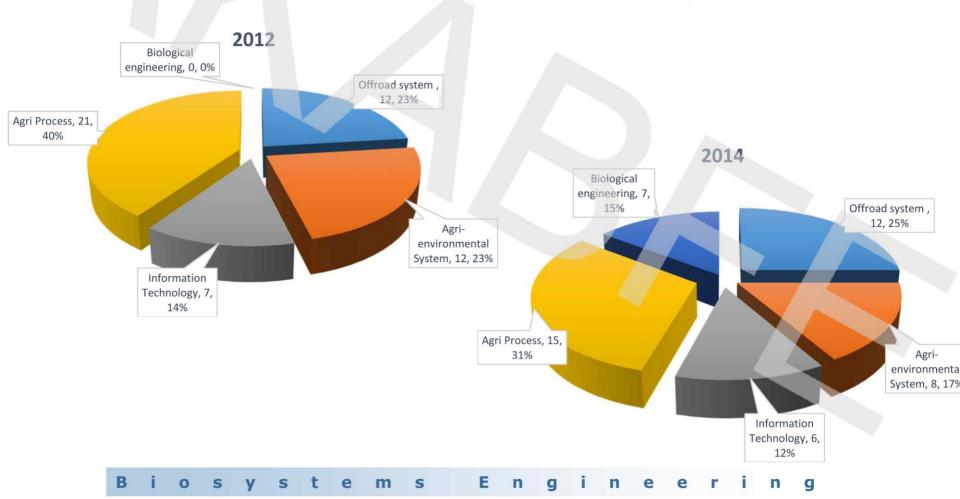
KNU

- Power machinery
- Control and automation
- Bioenergy

CBNU

- Power machinery
- IT

KNU


- Agri. Facilities
- Agri. Robots
- Power machinery

GNU/PNU

- Power machinery
- Bioenergy
- Postharvest Engr.

Search for Research Activities

- Journal of
 Biosystems
 Engineering
- Journal of Biosystems Engineering ('12~'14)
- Project reports regarding a research planning

Mega Trends of BSE research

Mega Trends

- High efficiency (to minimize inputs and maximize outputs)
- IT based intelligent and robotic systems
- Engineering techniques for food safety and high value productions

High efficiency

- Reduction of fuel consumption
- Electrification

Automation

- IT based system
- Monitoring
- Precision agriculture

System Integration

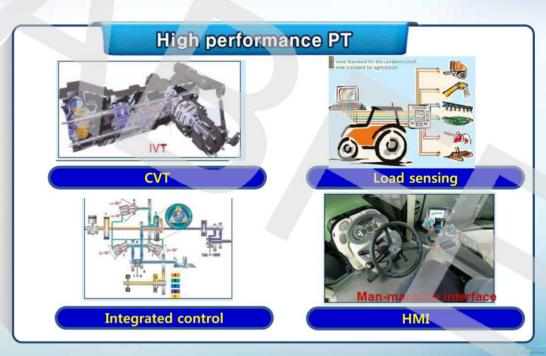
- ISO 11783
- Integrated system

Safety

- Food safety
- Human engineering

Multi-functioning

- Comfortability
- Reliability


Eco-friendliness

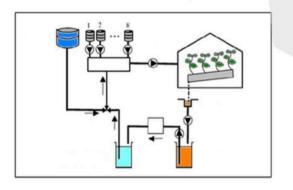
- Tier-IV engine
- Bioenergy

Power and Machinery

- Power systems for environmental conservation
- High efficiency transmission
- Engine and transmission control systems based on load sensing
- Human-machine interface cabin systems

Power and Machinery

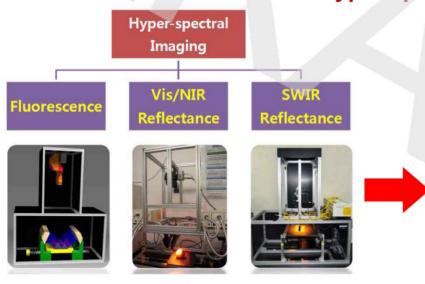
- Development of intelligent systems for agricultural machinery
 - * Self diagnostics and repair system, Auto-steering system, Electronic control system for machine operations
- Precision agriculture applications
- Unmanned systems (farm robots)

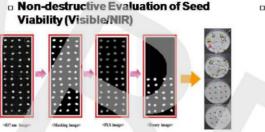


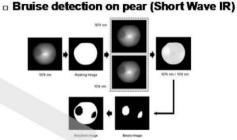
Agricultural Environment and Facilities

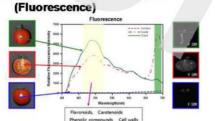
Engineering technologies for automated crop production systems

- Hydroponic nutrient management system
- WSN based precision irrigation system


Postharvest Engineering

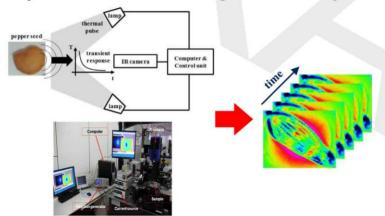

Physical Properties of Agricultural Products


Nondestructive Sensing & Quality Evaluation Techniques

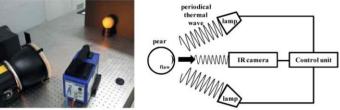

4 Hyper-spectral Imaging Technique

- Nondestructive sensing of seed germination capacity
- Bruise detection on fruit
- Moisture and fat chemical imaging for cooked meat
- Crack detection of cherry tomatoes

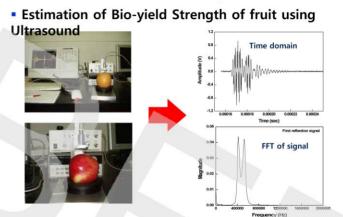
Crack detection of cherry tomatoes

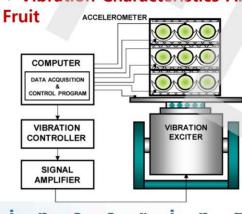


Postharvest Engineering



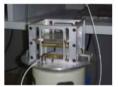
Physical Properties of Agricultural Products

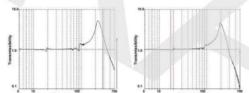

- Nondestructive Sensing & Quality Evaluation Techniques
- **♣** Infrared Thermal Imaging Technique
- Viability Evaluation of Seeds using Thermal Decay Characterization

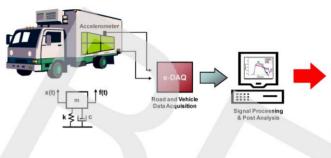

 Evaluation of Mechanical damage on Fruit using Thermal Response

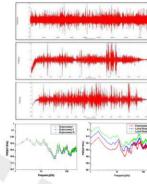
Ultrasound Technique

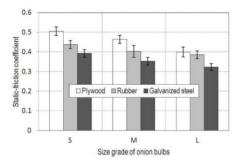
Vibration Characteristics Analysis of

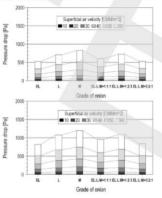



Postharvest Engineering


Post-Harvest Process Engineering of Agricultural Products


 Vibration Transmissibility Analysis of the Corrugated Paperboard for Agricultural Products


Distribution Environments Analysis of Agricultural Products


- Post-harvest Bulk Handling Machinery System of Agricultural Products
 - Friction Characteristics

Airflow Resistance Characteristics

Current status of BSE area

Pros

- Diverse and Integrated

 Favorable to future students
- No of exported agricultural machines is increased

 Job market is still quaranteed
- Various engineering technologies applied to agricultural sciences

Cons

- Small market and less popular as compared to other industries No of BSE departments has been being decreased
- Difficulty to have students with high academic ability
- Limitation to have clear originality and identity
 Applications of BSE to livestock and food areas are not common

Directions for Korean BSE

1. Play an important role of keeping agricultural productivity growth to sustainably meet the demands of a growing world while decreasing the cost of agricultural productions

Directions for Korean BSE

- 2. Gain the global competitiveness of Korean agricultural machinery companies
 - Continuing demands for students are made.

Directions for Korean BSE

3. Be more diverse and applicable to agricultural sciences → BSE identity and originality are provided.

Conclusions

- Korean agricultural mechanization has played a important role in increasing the agricultural productivity.
- The number of Korean agricultural machines exported to other countries has been being increased, providing a potential to be an important industry next to the automobile and electronic industries.
 - The new research areas of biosystems engineering conducted in Korea should be developed to be applicable to current Korean industry conditions.

Any questions? 감사합니다!

연락처 kimhj69@snu.ac.kr, 02-880-4604

Biosystems Engineering